Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cortex ; 169: 203-219, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948875

RESUMO

Color has meaning in particular contexts, and the meaning of color can impact behavioral performance. For example, the meaning of color about traffic rules (blue/green and red mean "go" and "stop" respectively) influences reaction times (RTs) to signals. Specifically, in a Go/No-go task, RTs have been reported to be longer when responding to a red signal and withholding the response to a blue signal (Red Go/Blue No-go task) than when responding to a blue signal and withholding the response to a red signal (Blue Go/Red No-go task). However, the neurophysiological background of this phenomenon has not been fully understood. The purpose of this study was to investigate the brain oscillatory activity associated with the effect of meaning of color on RTs in the Go/No-go task. Twenty participants performed a Blue simple reaction task, a Red simple reaction task, a Blue Go/Red No-go task, and a Red Go/Blue No-go task. We recorded responses to signals and electroencephalogram (EEG) during the tasks and evaluated RTs and changes in spectral power over time, referred to as event-related synchronization (ERS) and event-related desynchronization (ERD). The behavioral results were similar to previous studies. The EEG results showed that frontal beta ERD and theta ERS were greater when signals were presented in blue than red color in both simple reaction and Go/No-go tasks. In addition, the onset of theta ERS was delayed in the Red Go than Blue Go trial in the Go/No-go task. The enhanced beta ERD may indicate that blue signals facilitate motor response, and the delayed onset of theta ERS may indicate the delayed onset of cognitive process when responding to red signals as compared to blue signals in the Go/No-go task. Thus, this delay in cognitive process can be involved in the slow response in the Red Go/Blue No-go task.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Tempo de Reação/fisiologia , Encéfalo/fisiologia , Sincronização Cortical/fisiologia
2.
J Physiol Anthropol ; 42(1): 10, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337272

RESUMO

BACKGROUND: Synchronous finger tapping to external sensory stimuli is more stable for audiovisual combined stimuli than sole auditory or visual stimuli. In addition, piano players are superior in synchronous tapping and manipulating the ring and little fingers as compared to inexperienced individuals. However, it is currently unknown whether the ability to synchronize to external sensory stimuli with the ring finger is at the level of the index finger in piano players. The aim of this study was to compare the effect of piano experience on synchronization stability between the index and ring fingers using auditory, visual, and audiovisual combined stimuli. METHODS: Thirteen piano players and thirteen novices participated in this study. They were instructed to tap with their index or ring finger synchronously to auditory, visual, and audiovisual combined stimuli. The stimuli were presented from an electronic metronome at 1 Hz, and the tapping was performed 30 times in each condition. We analyzed standard deviation of intervals between the stimulus onset and the tap onset as synchronization stability. RESULTS: Synchronization stability for visual stimuli was lower during ring than index finger tapping in novices; however, this decline was absent in piano players. Also, piano players showed the higher synchronization stability for audiovisual combined stimuli than sole visual and auditory stimuli when tapping with the index finger. On the other hand, in novices, synchronization stability was higher for audiovisual combined stimuli than only visual stimuli. CONCLUSIONS: These findings suggest that improvements of both sensorimotor processing and finger motor control by piano practice would contribute to superior synchronization stability.


Assuntos
Percepção Auditiva , Percepção Visual , Humanos , Dedos , Desempenho Psicomotor , Movimento
3.
Neuroscience ; 517: 50-60, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907432

RESUMO

Transcranial static magnetic stimulation (tSMS) is known to influence behavioral and neural activities. However, although the left and right dorsolateral prefrontal cortex (DLPFC) are associated with different cognitive functions, there remains a lack of knowledge on a difference in the effects of tSMS on cognitive performance and related brain activity between left and right DLPFC stimulations. To address this knowledge gap, we examined how differently tSMS over the left and right DLPFC altered working memory performance and electroencephalographic oscillatory responses using a 2-back task, in which subjects monitor a sequence of stimuli and decide whether a presented stimulus matches the stimulus presented two trials previously. Fourteen healthy adults (five females) performed the 2-back task before, during (20 min after the start of stimulation), immediately after, and 15 min after three different stimulation conditions: tSMS over the left DLPFC, tSMS over the right DLPFC, and sham stimulation. Our preliminary results revealed that while tSMS over the left and right DLPFC impaired working memory performance to a similar extent, the impacts of tSMS on brain oscillatory responses were different between the left and right DLPFC stimulations. Specifically, tSMS over the left DLPFC increased the event-related synchronization in beta band whereas tSMS over the right DLPFC did not show such an effect. These findings support evidence that the left and right DLPFC play different roles in working memory and suggest that the neural mechanism underlying the impairment of working memory by tSMS can be different between left and right DLPFC stimulations.


Assuntos
Memória de Curto Prazo , Estimulação Transcraniana por Corrente Contínua , Adulto , Feminino , Humanos , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal Dorsolateral , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana/métodos , Encéfalo , Fenômenos Magnéticos , Estimulação Transcraniana por Corrente Contínua/métodos
4.
PLoS One ; 17(12): e0279477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36548285

RESUMO

During submaximal isometric contraction, there are two different load types: maintenance of a constant limb angle while supporting an inertial load (position task) and maintenance of a constant force by pushing against a rigid restraint (force task). Previous studies demonstrated that performing the position task requires more proprioceptive information. The purpose of this study was to investigate whether there would be a difference in cutaneous information processing between the position and force tasks by assessing the gating effect, which is reduction of amplitude of somatosensory evoked potentials (SEPs), and cutaneomuscular reflex (CMR). Eighteen healthy adults participated in this study. They contracted their right first dorsal interosseous muscle by abducting their index finger to produce a constant force against a rigid restraint that was 20% maximum voluntary contraction (force task), or to maintain a target position corresponding to 10° abduction of the metacarpophalangeal joint while supporting a load equivalent to 20% maximum voluntary contraction (position task). During each task, electrical stimulation was applied to the digital nerves of the right index finger, and SEPs and CMR were recorded from C3' of the International 10-20 system and the right first dorsal interosseous muscle, respectively. Reduction of the amplitude of N33 component of SEPs was significantly larger during the force than position task. In addition, the E2 amplitude of CMR was significantly greater for the force than position task. These findings suggest that cutaneous information processing differs with load type during static muscle contraction.


Assuntos
Dedos , Músculo Esquelético , Adulto , Humanos , Músculo Esquelético/fisiologia , Dedos/fisiologia , Contração Muscular/fisiologia , Reflexo/fisiologia , Pele/inervação , Contração Isométrica/fisiologia , Eletromiografia
5.
J Neuroeng Rehabil ; 19(1): 129, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424652

RESUMO

BACKGROUND: Transcranial static magnetic field stimulation (tSMS) using a small and strong neodymium (NdFeB) magnet can temporarily suppress brain functions below the magnet. It is a promising non-invasive brain stimulation modality because of its competitive advantages such as safety, simplicity, and low-cost. However, current tSMS is insufficient to effectively stimulate deep brain areas due to attenuation of the magnetic field with the distance from the magnet. The aim of this study was to develop a brand-new tSMS system for non-invasive deep brain stimulation. METHODS: We designed and fabricated a triple tSMS system with three cylindrical NdFeB magnets placed close to each other. We compared the strength of magnetic field produced by the triple tSMS system with that by the current tSMS. Furthermore, to confirm its function, we stimulated the primary motor area in 17 healthy subjects with the triple tSMS for 20 min and assessed the cortical excitability using the motor evoked potential (MEP) obtained by transcranial magnetic stimulation. RESULTS: Our triple tSMS system produced the magnetic field sufficient for neuromodulation up to 80 mm depth from the magnet surface, which was 30 mm deeper than the current tSMS system. In the stimulation experiment, the triple tSMS significantly reduced the MEP amplitude, demonstrating a successful inhibition of the M1 excitability in healthy subjects. CONCLUSION: Our triple tSMS system has an ability to produce an effective magnetic field in deep areas and to modulate the brain functions. It can be used for non-invasive deep brain stimulation.


Assuntos
Estimulação Encefálica Profunda , Estimulação Magnética Transcraniana , Humanos , Voluntários Saudáveis , Potencial Evocado Motor , Campos Magnéticos
6.
Heliyon ; 8(5): e09469, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35647346

RESUMO

Prior knowledge of color, such as traffic rules (blue/green and red mean "go" and "stop" respectively), can influence reaction times (RTs). Specifically, in a Go/No-go task, where signals were presented by a light-emitting diode (LED) lighting device, RT has been reported to be longer when responding to a red signal and withholding the response to a blue signal (Red Go/Blue No-go task) than when responding to a blue signal and withholding the response to a red signal (Blue Go/Red No-go task). In recent years, a driving simulator has been shown to be effective in evaluation and training of driving skills of dementia and stroke patients. However, it is unknown whether the change in RT observed with the LED lighting device can be replicated with a monitor presenting signals that are different from the real traffic lights in terms of depth and texture. The purpose of this study was to elucidate whether a difference in visual modality (LED and monitor) influences the effect of prior knowledge of color on RTs. Fifteen participants performed a simple reaction task (Blue and Red signals), a Blue Go/Red No-go task, and a Red Go/Blue No-go task. Signals were presented from an LED lighting device (Light condition) and a liquid crystal display (LCD) monitor (Monitor condition). The results showed that there was no significant difference in simple RT by signal color in both conditions. In the Go/No-go task, there was a significant interaction between the type of signal presentation device and the color of signal. Although the RT was significantly longer in the Red Go/Blue No-go than Blue Go/Red No-go task in the Light condition, there was no significant difference in RT between the Blue Go/Red No-go and Red Go/Blue No-go tasks in the Monitor condition. It is interpreted that blue and red signals presented from the LCD monitor were insufficient to evoke a perception of traffic lights as compared to the LED. This study suggests that a difference in the presentation modality (LED and monitor) of visual information can influence the level of object perception and consequently the effect of prior knowledge on behavioral responses.

7.
PeerJ ; 9: e12250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707936

RESUMO

BACKGROUND: Recently, event-related potentials (ERPs) evoked by skin puncture, commonly used for blood sampling, have received attention as a pain assessment tool in neonates. However, their latency appears to be far shorter than the latency of ERPs evoked by intraepidermal electrical stimulation (IES), which selectively activates nociceptive Aδ and C fibers. To clarify this important issue, we examined whether ERPs evoked by skin puncture appropriately reflect central nociceptive processing, as is the case with IES. METHODS: In Experiment 1, we recorded evoked potentials to the click sound produced by a lance device (click-only), lance stimulation with the click sound (click+lance), or lance stimulation with white noise (WN+lance) in eight healthy adults to investigate the effect of the click sound on the ERP evoked by skin puncture. In Experiment 2, we tested 18 heathy adults and recorded evoked potentials to shallow lance stimulation (SL) with a blade that did not reach the dermis (0.1 mm insertion depth); normal lance stimulation (CL) (1 mm depth); transcutaneous electrical stimulation (ES), which mainly activates Aß fibers; and IES, which selectively activates Aδ fibers when low stimulation current intensities are applied. White noise was continuously presented during the experiments. The stimulations were applied to the hand dorsum. In the SL, the lance device did not touch the skin and the blade was inserted to a depth of 0.1 mm into the epidermis, where the free nerve endings of Aδ fibers are located, which minimized the tactile sensation caused by the device touching the skin and the activation of Aß fibers by the blade reaching the dermis. In the CL, as in clinical use, the lance device touched the skin and the blade reached a depth of 1 mm from the skin surface, i.e., the depth of the dermis at which the Aß fibers are located. RESULTS: The ERP N2 latencies for click-only (122 ± 2.9 ms) and click+lance (121 ± 6.5 ms) were significantly shorter than that for WN+lance (154 ± 7.1 ms). The ERP P2 latency for click-only (191 ± 11.3 ms) was significantly shorter than those for click+lance (249 ± 18.6 ms) and WN+lance (253 ± 11.2 ms). This suggests that the click sound shortens the N2 latency of the ERP evoked by skin puncture. The ERP N2 latencies for SL, CL, ES, and IES were 146 ± 8.3, 149 ± 9.9, 148 ± 13.1, and 197 ± 21.2 ms, respectively. The ERP P2 latencies were 250 ± 18.2, 251 ± 14.1, 237 ± 26.3, and 294 ± 30.0 ms, respectively. The ERP latency for SL was significantly shorter than that for IES and was similar to that for ES. This suggests that the penetration force generated by the blade of the lance device activates the Aß fibers, consequently shortening the ERP latency. CONCLUSIONS: Lance ERP may reflect the activation of Aß fibers rather than Aδ fibers. A pain index that correctly and reliably reflects nociceptive processing must be developed to improve pain assessment and management in neonates.

8.
Brain Sci ; 11(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199505

RESUMO

Transcranial static magnetic field stimulation (tSMS) can modulate human cortical excitability and behavior. To better understand the neuromodulatory effect of tSMS, this study investigates whether tSMS applied over the left dorsolateral prefrontal cortex (DLPFC) modulates working memory (WM) performance and its associated event-related potentials (ERPs). Thirteen healthy participants received tSMS or sham stimulation over the left DLPFC for 26 min on different days. The participants performed a 2-back version of the n-back task before, during (20 min after the start of stimulation), immediately after, and 15 min after the stimulation. We examine reaction time for correct responses, d-prime reflecting WM performance, and the N2 and P3 components of ERPs. Our results show that there was no effect of tSMS on reaction time. The d-prime was reduced, and the N2 latency was prolonged immediately after tSMS. These findings indicate that tSMS over the left DLPFC affects WM performance and its associated electrophysiological signals, which can be considered an important step toward a greater understanding of tSMS and its use in studies of higher-order cognitive processes.

9.
Front Hum Neurosci ; 15: 674964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177494

RESUMO

In daily life, the meaning of color plays an important role in execution and inhibition of a motor response. For example, the symbolism of traffic light can help pedestrians and drivers to control their behavior, with the color green/blue meaning go and red meaning stop. However, we don't always stop with a red light and sometimes start a movement with it in such a situation as drivers start pressing the brake pedal when a traffic light turns red. In this regard, we investigated how the prior knowledge of traffic light signals impacts reaction times (RTs) and event-related potentials (ERPs) in a Go/No-go task. We set up Blue Go/Red No-go and Red Go/Blue No-go tasks with three different go signal (Go) probabilities (30, 50, and 70%), resulting in six different conditions. The participants were told which color to respond (Blue or Red) just before each condition session but didn't know the Go probability. Neural responses to Go and No-go signals were recorded at Fz, Cz, and Oz (international 10-20 system). We computed RTs for Go signal and N2 and P3 amplitudes from the ERP data. We found that RT was faster when responding to blue than red light signal and also was slower with lower Go probability. Overall, N2 amplitude was larger in Red Go than Blue Go trial and in Red No-go than Blue No-go trial. Furthermore, P3 amplitude was larger in Red No-go than Blue No-go trial. Our findings of RT and N2 amplitude for Go ERPs could indicate the presence of Stroop-like interference, that is a conflict between prior knowledge about traffic light signals and the meaning of presented signal. Meanwhile, the larger N2 and P3 amplitudes in Red No-go trial as compared to Blue No-go trial may be due to years of experience in stopping an action in response to a red signal and/or attention. This study provides the better understanding of the effect of prior knowledge of color on behavioral responses and its underlying neural mechanisms.

10.
Brain Sci ; 11(4)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920398

RESUMO

The purpose of this pilot study was to investigate whether transcranial static magnetic field stimulation (tSMS), which can modulate cortical excitability, would influence inhibitory control function when applied over the dorsolateral prefrontal cortex (DLPFC). Young healthy adults (n = 8, mean age ± SD = 24.4 ± 4.1, six females) received the following stimulations for 30 min on different days: (1) tSMS over the left DLPFC, (2) tSMS over the right DLPFC, and (3) sham stimulation over either the left or right DLPFC. The participants performed a Go/NoGo task before, immediately after, and 10 min after the stimulation. They were instructed to extend the right wrist in response to target stimuli. We recorded the electromyogram from the right wrist extensor muscles and analyzed erroneous responses (false alarm and missed target detection) and reaction times. As a result, 50% of the participants made erroneous responses, and there were five erroneous responses in total (0.003%). A series of statistical analyses revealed that tSMS did not affect the reaction time. These preliminary findings suggest the possibility that tSMS over the DLPFC is incapable of modulating inhibitory control and/or that the cognitive load imposed in this study was insufficient to detect the effect.

11.
Front Hum Neurosci ; 15: 617146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679346

RESUMO

INTRODUCTION: Previous transcranial magnetic stimulation (TMS) studies have revealed that the activity of the primary motor cortex ipsilateral to an active hand (ipsi-M1) plays an important role in motor control. The aim of this study was to investigate whether the ipsi-M1 excitability would be influenced by goal-directed movement and laterality during unilateral finger movements. METHOD: Ten healthy right-handed subjects performed four finger tapping tasks with the index finger: (1) simple tapping (Tap) task, (2) Real-word task, (3) Pseudoword task, and (4) Visually guided tapping (VT) task. In the Tap task, the subject performed self-paced simple tapping on a touch screen. In the real-word task, the subject tapped letters displayed on the screen one by one to create a Real-word (e.g., apple). Because the action had a specific purpose (i.e., creating a word), this task was considered to be goal-directed as compared to the Tap task. In the Pseudoword task, the subject tapped the letters to create a pseudoword (e.g., gdiok) in the same manner as in the Real-word task; however, the word was less meaningful. In the VT task, the subject was required to touch a series of illuminated buttons. This task was considered to be less goal-directed than the Pseudoword task. The tasks were performed with the right and left hand, and a rest condition was added as control. Single- and paired-pulse TMS were applied to the ipsi-M1 to measure corticospinal excitability and short- and long-interval intracortical inhibition (SICI and LICI) in the resting first dorsal interosseous (FDI) muscle. RESULTS: We found the smaller SICI in the ipsi-M1 during the VT task compared with the resting condition. Further, both SICI and LICI were smaller in the right than in the left M1, regardless of the task conditions. DISCUSSION: We found that SICI in the ipsi-M1 is smaller during visual illumination-guided finger movement than during the resting condition. Our finding provides basic data for designing a rehabilitation program that modulates the M1 ipsilateral to the moving limb, for example, for post-stroke patients with severe hemiparesis.

12.
Children (Basel) ; 8(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498331

RESUMO

To clarify the possibility of event-related potential (ERP) evoked by heel lance in neonates as an index of pain assessment, knowledge acquired by and problems of the methods used in studies on ERP evoked by heel lance in neonates were systematically reviewed, including knowledge about Aδ and C fibers responding to noxious stimuli and Aß fibers responding to non-noxious stimuli. Of the 863 reports searched, 19 were selected for the final analysis. The following points were identified as problems for ERP evoked by heel lance in neonates to serve as a pain assessment index: (1) It is possible that the ERP evoked by heel lance reflected the activation of Aß fibers responding to non-noxious stimuli and not the activation of Aδ or C fibers responding to noxious stimulation; (2) Sample size calculation was presented in few studies, and the number of stimulation trials to obtain an averaged ERP was small. Accordingly, to establish ERP evoked by heel lance as a pain assessment in neonates, it is necessary to perform a study to clarify ERP evoked by Aδ- and C-fiber stimulations accompanied by heel lance in neonates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...